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THE PROBLEM OF THE STABLE SYNTHESIS OF BOUNDED CONTROLS 
FOR A CERTAIN CLASS OF NON-STEADY SYSTEMS* 

G.A. BESSONOV, V.I. KOROBOV and G.M. SKLYAR 

Developing the results of /l-3/ with regard to the synthesis of bounded 
controls, a constructive method is given for constructing the control- 
lability function and using the latter to set up a synthesizing control 
for a certain class of non-steady systems. 

1. In this paper the method of Lyapunov functions is employed to solve the following 
problem of synthesizing bounded controls: given a controlled system 

I' = f (t, z, u), I E R", UEQCH' (1.1) 

it is required to construct a control u = u(t, z) satisfying a given constraint UEQ such 
that the trajectory z(t) of system (l.l), beginning at an arbitrary point z,, at time t,, 
arrives at the final instant of time t, + T (T = T(t,,r,)) at a preassigned point zl. The 
synthesis is said to be stable if r,is a rest point (i.e., t (t, .rl, u,) = 0 for some u1 E Q 
and any t E It,, t, + T)) and for any E> 0 there exists 610. such that 11 z(t) - z,li < e 
if III~ - ql( -c 6 and TV jt,,t, + T). Otherewise, the synthesis is said to be unstable. Note 
that when z1 is not a rest point the synthesis is, as a rule, unstable. 

For example, consider the system ~,'~~,fl,~,'=~,~~~~i. The requirement is that the 
trajectory reach the origin o(+=t,= 0) from an arbitrary point (+.I,). The control solving 
the synthesis problem is: lb(z)= -1 if cp > 0. ~1 (4 = 1 if 'p < 0, where p =-x1 T (z.) -!- i)sign (I, + 
1):2. However, any admissible synthesis in this problem is unstable. Indeed, let z, (lo) > 0. 
Then a necessary condition for reaching the origin is that at some time tl, zI'(L;)<O, i.e., 

=t (4) 6 ---iv whence it follows that any possible synthesis is unstable. 
In this paper attention will be confined to the case of stable synthesis. Throughout 

the sequel it will be assumed, without loss of generality, that z, = 0. The control synthesis 
problem will be solved with the help of the controllability function 8 (t,r) /2/, which plays 
a role in the stable synthesis problem analogous to that of the Lyapunov function in stability 
theory. 

2. Our solution of the synthesis problem is based on the following theorem. 

Theorem 1. Consider the controlled process (1.1). Assume that the vector-function 
f(t,z,u) is jointly continuous in all variables and, in the domain 

(0. 2, 4: 1, < t Q 4, 8 < Pl < II 211 Q pt. u E Q) 
satisfies a Lipschitz condition 

II f @, 2”. u-1 - f 0, t’, 4 II -G L, (Pl, PSI (II 2’ - 2’ II + II U’ - Ii II ) 
Assume that in the closed domain 

G = J x (z: II ~(1 < R} (J = k tll) (2.1) 

where O<R<+co, there exits a function 8 (t. 4 satisfying the following conditions: 
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1) 8 @,x)>O for rf 0,t IF J and 8 (t, 0)= 0 for any t EJ. 
2) 8 (f, 4 is continuous everywhere and continuously differentiable everywhere except 

possibly at points (1,0), 1 E 1. 
3) There exists c> 0 

{r:))r))<ll) for all t=J. 
such that the set Qc (t) = {z: 8 (t,s)< c} is bounded and Qc (1)~: 

4) There exists a function u(f.z)i-'S2 for SE Q,(t), t E J such that 

(2.2) 

for some CZ> 0 and fl> 0; moreover, in the domain {(t, 2): to < t < tr. 0 < p, <II 211 < p2) the 
function satisfies a Lipschitz condition )I L( (t. t") - u (t, t')II < I,? (pl,pp)(( x" - ~'(1. 

5) c < IS (ti - t&l". 
Then the trajectory of system (1.1) beginning at an arbitrary point z0 E Q, (to) at time 

t,, will reach the point x = 0 at a certain final instant t, + T, where T<aW@(t,,q)/@. 
The proof of Theorem 1 is analogous to thatof the corresponding theorem in /2/ for 

steady systems (1.1). Note that condition (2.2) guarantees the possibility of stable syn- 
thesis. 

Remark 1. If a=+m. then 8 (1,~) is a Lyapunov function guaranteeing asymptotic 
stability of the trivial solution of system (1.1). 

In /l/, and also in /2, 3/, we devised methods for constructing a controllability 
function 0(z) and a synthesizing control U(Z) for linear steady and certain classes of non- 
linear ones. Unlike the Lyapunov function, however, the controllability functionwasexhibited 
in implicit form, i.e., as the solution of a certain algebraic or transcendental equation. 

3. To illustrate the synthesis of bounded controls, we consider the system 

t' = A (t) z + B (t) u. z F R”, u :z H’, II u/l < d (3.1) 

we shall assume henceforth that 

A (t), B (t) c: Cm IL,. -i- w), II A (t)ll Q a, II A’B (GII Q bk+* (3.2) 

(k = 0, I, . . .), vt '5 It,, + w) 

A = A (t) - Id/dq 

(I is the identity matrix), and in addition 

rank (B (t), AH (t), . . ., A"-'B (1)) = n, Vt .Z J (3.3) 

Theorem 2. Consider system (3.1). Let 8 (t,z) be the function defined by the equation 

2a,e = (Ne-,' (t) x. z), 2 f 0, a0 > 0 (3.4) 
in the closed domain G (2.1); 8 (t, 0) = 0, where 

‘3 (1, T) B(r) B+ (7) CD* (t, r) dr (3.5) 

(the asterisk denotes transposition), a(t,~) is the Cauchy matrix of the system i = A (t)~. 
Then there exists c> 0 such that the set Q, (1) 7 {I: 8 (t,z)< c) is bounded and Qe(f)c 

(2: I/t/l< R) for any t EJ; in addition, for any z. E Q, (to)'\ (0) the unique solution r (0 
of system (3.1) with the control 

u (t, 5) = --H* (t) &it.., (t) I, r E Q, (t)\ (0) (3.6) 

and initial condition ~(10) -T 20 is defined on a certain semi-open interval Ito,1, i- T)CJ 
and satisfies the condition lim z(t) = 0 as t -+ t, + T, where T < 8 (to, q)/f3, fl .> 0. Moreover, 
c< p(tl - to) and for any d> 0 the coefficient ao> 0 may be so chosen that the control 

u U. r) satisfies the constraint Iju(t,x)II<d for z~Q,(t)\{0). 1EJ. 

Remark 2. If 8 is fixed, then for any 8~(0,f:(Za)) the function (3.6) is a stabilizing 
control for system (3.1), and 0 .= (Ne+ (I) J. z)/(20,) is a Lyapunov function. 

The proof of Theorem 2 amounts essentially to verifying that u(t,z) is bounded and 
satisfies conditions 1 through 5 of Theorem 1 for the selected functions B (t, I) and u (t, z). 

Note that under the assumptions of Theorem 2, if O<-0~ i/(ia), the matrices Ne (t) and 

(3.7) 



are bounded and positive definite: 

(3.8) 

(He ft) I, r) >0, (Nle_(t)r, z) > 0 for r =#= 0 and any t E J. In addition, one can show by direct 
substitution that Ne(t), N,e(t) and He-r(t) satisfy the equations 

dN$dt - ANe - NatI* = -BB* -+ N&3 (3.9) 
dN,$dt - AN,e - N,sA* = -Na +- N,$0 (3.10) 

dN$/dt + Ni’A + A*Ke1 = N;lBB*Ne’ - Ne’le (3.11) 

We shall show that Eq.(3.4) has a unique positive solution e&x) in some closed domain 
G (2.1). 

Consider the function F ft,s,f3) = 2a,e - (iVe_‘(t).Z,x). Since 

(N9-l (t) ~4 > II Ne 0) II -I II z II a > (1 - 2aW II x II *l(bW) 

(we are using the first inequality of (3.811, it follows that F (t,x, Cl+)< 0 for sufficiently 
small e(s+O,tEJ). In addition, for all r# 0, t E J the function F&2,63) is monotone 
increasing since @(t,x,@)/H3 )2ae>0. 

Cn the other hand, F &x,6)> 0 for 8= h< 1/(2a) (where k= i/(2a -k e),e > 0) and 
any (t,z)~ G, where 

This follows from the inequality 

(N&-" (t) X, I) < II k-l (tf II II x II * < II hvl 6) I f1’ < hJ 

i.e., F (t, x, h) > 0. 

R = lZa,hl(rnEaJx II N&-l (t) II )I’/: 

Thus, Sq.13.4) defines a positive function 6(&x) in the domain G for xf 0. The fact 
that this function is continuous and continuously differentiable for xf 0 and any tEJ 
follows from the implicit function theorem, since aF (t,x,8)/@#0. 

Put @(t,O)= 0,t~J. It can be shown that 0(t,x) is continuous at I= 0 for any 
t Fz J. 

Indeed, suppose the contrary: there exists 8, > 0 such that, for any 6>0, there exist 

If then 6 < (~~~~j~~'/*, we obtain 8 It', d)<q&, contrary to our assumption. 
The inequality (Ne-' ft) x, z) > 11 Ne-l (t)II -fjI xl/ 3 implies that the set &(t) is bounded 

and Q. (t) c (5: 11 x)1 < i) for c< R(JfaW + 2a,ba - aR)l(2aob*) and any t E f. Thusconditions 
l-3 of Theorem 1 are satisfied. 

To verify the other conditions of the theorem we need some auxiliary results. 
Consider the operator De(O<6( l/a), defined for matrices P(t) as follows: 

It can be verified that Da has the following properties: 
lo. If II P (t)JJ < b for t E itor f 001, then 

If (M'P) (t) II < b iW - &)I”’ 

2O. If P (t) E 6’ [to, + m), If AP (t) 11 < 6 for i E [to, -t 0~)~ then 8""' (-De= P) (t)Z P (t) as 

e + 0 on fto, + m). 

Lemma 1. There exists %>O such that for O(e(&, 

(3.13) 

(3.14) 



(Et’) (t. (-1) - ((De” (A&)” H) (t)) ((De” (ADe)k B) (I))+, n i, 2) 

Proof. It follows from the properties of the operator Dethat the series (3.13) and 
(3.14) may be differentiated with respect to t on If,:!- 00) for rl(:@< l.(n : ‘j). Hence, one can 
show by direct substitution that these series satisfy Eqs.(3.9) and (3.10), respectively. 

Thus (3.5) and (3.13) are bounded solutions of Eq.(3.9), and (3.7) and (3.14) are 
bounded solutions of Eq.(3.10), I E Ilo,-tw). 

We transform Eq.(3.9) to the form 

(3.15) 

Let us assume that Eq.(3.9), and hence also (3.15), has two distinct bounded solutions 

&e(r) (1) and .Ve@) (t). Then their difference Ke (I) = se(i) (I) - se (*)(f) will satisfy the equation 

obtained from (3.15) by dropping the term ~610. Consequently, the solutions I (I) of the 
system I' -: - (A (1) :- 1/(28))r satisfy the identity 

(Ke (r)r, I) =- c, Vf E lfo, 7 00) (3.16) 

Choose g so that for (~<8<u one has lIz(f0 as r--km. Then the identity (3.16) 
can hold for all felfo. -i mJ only if Ke (1) ~0 for any f E If,p 1-m) and E= U. Thus, when 
o<8<q Eq.(3.15), and hence also (3.9), has a unique bounded solution. Hence it follows 
that when o < t) < 8, - min (i/(2a); i:(o i- b); q) the matrix ‘ve (0 can be represented by the series 
(3.13) for any t EII~, i 00). 

Analogous arguments show that if (~<e<q Eq.(3.10) has a unique bounded solution, and 
when 0<0<8, the matrix 

E’+ m). 
:Vle(f) can be represented by the series (3.14) for any 1 E 

Remark 3. The essential point in Eqs. (3.13) and (3.14) is the decomposition of the 
matrix into a sum of positive matrices. In the steady case these decompositionsare simplified: 

E(,“) (I, 0) = HFIS (R,,eA)k ml* (R,,,A)*“H:; 
R ve = (A f f/e,-1 

these formulae are used in the proof of Theorem 2 of /3/. 

Lemma 2. There exists @I > 0 such that for 0< 8 < 8, 

8 (A', (1) .r‘, .t.) :' YPII t II 1, y1 > 0, v1 F J 

Proof. We have 

n-1 

(Pk (f) 7. (A’B (t))(A’u (1))‘. G, (1) = (B (t), AB (I), . . ., A"+3 (1))) 

(3.17) 

for r#u and any f EJ, since otherwise (3.3) would fail to hold. In addition, the function 
G,(f) is continuous, and so there exists a function y (f)>O continuous on J such that (G,,* (fp. 

C,* (fp) > 2y (f) fl I 1’. Therefore 

(3.18) 

It follows from the properties of De that 

“-* “4 
kz e-w+‘q’) (I, e) 

=kzpk(r) 

as e-u on J. Hence there exists %> 0 such that, for u<e<e, 

n-1 
!,Z e-O(k+l)E!l)(I, e) z* 2) >YI BzR. Vf E I 

We shall assume that 8, < 1; inequality (3.17) then follows from the preceding inequality. 
We can now prove the validity of condition 4 of.Theorem 1. 
Differentiating the relationship Za&(t,z) - (N-l ~~.xj(f)z,z)= 0 along trajectoriesofsystem 

(3.1) with a control of type (3.6) and noting (3.4) and (3.11), we obtain 



From Lemma 1 and the properties of De we obtain the inequality 

(NM(f)Y, Y)<44ne(Ne(t)Y, Y) + a 

s=(~~~(l+k)E!1’(1,8)y,Y) 
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(3.19) 

(3.20) 

Next, since S < rleF 11 y 11 ‘, rl>O, for 0~ 8 <0,<l/(a + b), it follows from (3.20), 
Lemma 2 and (3.19) that 

8' (t, 5) < - Ii + 4 (n + r&,)1-', I # 0 

in the closed domain G (2.1), where 

R = (~u,~,/II.M; 11 Ne.-l (t) 11 )"I, 0 -c 8 < 8, -c 8, = 

min (e,, e,, es, 1) 
We will now show that the control is bounded for ZE Q.(t)\ {0}, t EJ. 
Using (3.6) and (3.1) and recalling the properties of De and Lemma 1, we have 

il u (1, 2) II* = 2a,V, (t, Y (h 4, e 0. 4) (3.21) 

Here 

s=O,l,... 

M, (L e) = ((@A + I) De(A&)'E)(t)) {(@A -I- I)De(me)'B) (t))+ 

(3.22) 

Consider the family of functions (3.22) for 0<8<8,, y+ 0, tEJ. Usingtheproperties 
of De, one can show that V, (f, y, e) < 2 + VI+l (t, y, e). Therefore 

vO (t. y, e) < 28-1 - 2 + Tv.(t, y, e). s = 1, 2. . . . 

NOW, for o<e<e4<e8, 

and so, in view of Lemma 2, we infer that V,_,(t,Y,e)< m,/y,. Choosing 

a, < dV(2"*' - 4 + 2" m,/y,) 

we see that the control is bounded: 

II s (t. 2) II < 4 I E: @,, (t) \ {o), t r J 
Now, if we require that 

c ( mill (R fa*R* + 2a,b1 - al?; p (fl - 1,): e,} 

where p = (I + 4 (n + rI/yl))-', then 

0, (t) C (r: 11 .r II < R) and L, + T < f,. 

This completes theproof of Theorem 2. 
Note that the assumptions of Theorem 2 are satisfied, for example, if the elements of 

the matrix a-1 (f)S (1) are quasipolynomials. 

Example . Consider the system 

z*+ +*++* +=-33rl--+.; lUl(l, rE[l;loj 

Then 

Suppose, say, that b= 7.22, 0 = 4.8. 0 < 8 <0,7Oi, yI = 3.66*1oJ. III, = 52, rl 3 0, 8 = 'is, a0 = 1.7.1V 

Then the control solving the synthesis problem has the form 
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fr E !jc Ifi \ (0) :. (.I: t) < 4.4i.ltP) \ (0). f e II; 1OlP 

where 8 : c) it. 11 is the unique positive solution of the equation 

3.4.10-5c)' - (i&" I,* + !Mfz*r, - 32z,a)tY + ( 12f3z,* -- 4r*r,r, - 
8fr,‘)t) + f’.r,? -.. ~f3r,r, :. f+22 

4. Consider system (3.1) (to simplify the discussion we assume that r=l). Define an 
n-dimensional vector-function c(t) from the conditions c*(t) A’R (t) = 0. i = 0, 1, . ., IL - 2; 
C* (t) A"-'B(t) = i. In view of (3.3) and the choice of c(t),it can be shown that the matrix 

H (1) -- co1 (c* (t), (A,c (t))', . . ., (A;-% (t))') (4.1) 

(A, = A* (t) i- Id/&) 

is non-singular for any tEJ. Transforming in (3.1) to the new variable z = H(t)s and 
introducing a new control v = (Ar"c(i))+P (t) z f U, we obtain a steady system 

Zi * :: zi+,, i-l,...,n- i; &,'F c', Iu1<&<d (4.2) 

Solving the control synthesis problem for this system, using Theorem 2 or Theorem 2 of 
/3/ and returning to the old variables and control, we obtain 

Theorem 3. Let 8 (t,x) be the function defined by the equation 

n 

2%43*” .=, Elf& i+j-2 [(A:?(t))* .z] [(A{?(t))* zl, z # 0 (4.3) 

(Nil - 11 f~,eL+‘-m-l Hi, +I. ,..+ n) 

in the closed domain G (2.1), 8 (t,O)= 0. 
Then there exists c> 0 such that o.(t) is bounded and oc (t)C {z: /zII<R) for any 

t E J, and for any I,, E 0, (to)\ (0) the unique solution z(t) of system (3.1) with control 

” 
u(t, x)=- - 2 

t&'C (f))* I 
@a-j+1 - (Ar"C{t))* I, ==Q,(t)\@) 

j-.1 
(4.4) 

and initial condition z(to)= z o is defined on some semiclosed interval It,, to C T) C J and 
satisfies the condition: lim z (t) = 0 as t--c to -i- T, where T < (1 + 4748 (t,,z,). Moreover, 
c < (tl - Q/(1 + 4n) for II u (t, I) II < d for 3 E Q. (t) \ {O), t E J. 

Example. Consider the motion of a rigid body 
two jet engines, described by the equations 

with a single axis of symmetry controlled 

Here %r %*% are the projections of the angular velocity of the body on coordinate axes 
rigidly attached to it, o is the angular velocity of rotation of the first engine, and U, 
and up are the controlling torques. 

The problem is to construct controls u1 (1, I) and u,(I,z) that will take the body from an 
arbitrary position z(O)= z0 to the point 0 (zl = zl= I,= 0) in a finite time. 

Choose ~~f1.1) = --srgnzlo, Then the system becomes linear. Using Theorem 3, we see that 
the control 

-sign zro; g, - t sign zIO - zIo - 0 

where 8 = 8(f,r) is defined by the equation 

takes any point 20 from some given neighbourhood of the origin to the point 0 in a finite time 
T= I =a0 I. and moreover 1 ui (1. I) I< 1, L = i, 2. 
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EXPONENTIAL STABILIZATION OF NON-LINEAR STOCHASTIC SYSTEMS* 

V.A. UGRINOVSKII 

We consider the stabilization of non-linear systems whose parameters are 
subjected to "white noise". For stochastic systems with non-linear 
feedback, we derive sufficient (frequency-domain) conditions of exponential 
stabilization by a controller that uses information about the system 
output (incomplete System state information). The problem of the 
stabilization of linear stochastic systems has been studied in some detail 
/l-3/. Yet for non-linear stochastic systems we only have general 
theorems that reduce the stabilization problem to finding a stochastic 
Lyapunov function /4, 5/. 

In this paper, we derive sufficient conditions of exponential 
stabilization by methods of the theory of absolute stochastic stability. 
The advantages of these methods are well-known: the specific Lyapunov 
function is not required, and its existence in the class of functions 
'quadratic form plus integrals over non-linearities" is easily checked 
/6/. The latest results of this theory for stochastic systems /7/ make 
it possible to solve the stabilization problem for a wide class of non- 
linear systems with parametric disturbances. 

1. Formulation of the problem. We consider a controllable dynamic systemdescribed 
by Ito's differential equation 

t' = (A, + ZA,w,‘) t + (b, + Zb,w,') U A 
(90 + X9lW,') cp (c). c = v+z 

(1.1) 

Here z is the n-dimensional state vector, u is the d-dimensional control vector, a is 
the l-dimensional vector of observed variables, m is the m-dimensional vector function 
describing the non-linear feedback or allowing for other non-linear effects in the system, 

AJ. bJ, qJ (I - 0, 1, . . .I s) are appropriately dimensioned constant matrices, and 
s) are independent standard Wiener processes; 

t”J (j = i, . . ., 

here and henceforth, summation is over j from 
j=i to j = s, unless otherwise stated. 

The class of admissible non-linear functions g(u) is described in accordance with the 
general theory of absolute stability /6/. Let 

F, (U,s,g~,$) = U*TU + 2U*p'# + v*L%' - z/J*&p 

fJ = diag IA,AJ+I, AJ = V+ (Ap + q@). i = 1, . . ., s 

(1.2) 

The symbol diagI.1 is the vector formed from the main diagonal elements of the matrix 
in brackets: jJ (j = i, . . ., s) are l-dimensional vectors, and 9 is an m-dimensional vector. 
The real matrices r = r*, p, g = g l , fJ are 1 x 1, 1 X m, m X m, 1 X m respectively. We assums 
that the matrix 8 satisfies the following conditions: a) it is non-zero only when V+bJ = 0 

for all j = 1, . . . . s; b) if condition a) holds, then the element 9 t, of the matrix 8 may be 
non-zero only if 'pi is a continuously differentiable function of a single variable Us the 
k-th component of the vector (1. 

We assume that the non-linearity cp satisfies the condition 
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