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THE PROBLEM OF THE STABLE SYNTHESIS OF BOUNDED CONTROLS
FOR A CERTAIN CLASS OF NON-STEADY SYSTEMS'

G.A. BESSONOV, V.I. KOROBOV and G.M. SKLYAR

Developing the results of /1-3/ with regard to the synthesis of bounded
controls, a constructive method is given for constructing the control-
lability function and using the latter to set up a synthesizing control
for a certain class of non-steady systems.

1. 1In this paper the method of Lyapunov functions is employed to solve the following
problem of synthesizing bounded controls: given a controlled system

I =f(tzu), R, vSQCR (1.1)

it is required to construct a control u = u (t, z) satisfying a given constraint u = Q such
that the trajectory =z(t) of system (1.1), beginning at an arbitrary point =z, at time ¢,,
arrives at the final instant of time ¢, + T (T = T (to, 7o) at a preassigned point xz,. The
synthesis is said to be stable if z,is a rest point (i.e., [(t,z,,u) =0 for some u, & Q
and any t & (ty,ty + T)) and for any e > 0 there exists 6 > 0. such that ||z () — g li<<e

if [z — 2 |l<< 6 and t & fty, ty + T). Otherewise, the synthesis is said to be unstable. Note
that when z; is not a rest point the synthesis 1s, as a rule, unstable.

For example, consider the system =z '=2z,41, 2,°'=u, |u}g1. The requirement is that the
trajectory reach the origin 0 (z; = z,=0) from an arbitrary point (s, z). The control solving
the synthesis problem is: u(z)= —1 if ¢ 20, u(zx)=1 if ¢ <0, where ¢ =z, -r (1, 1) sign (z4 +
1)/2. However, any admissible synthesis in this problem is unstable. Indeed, let z, (f) >U.
Then a necessary condition for reaching the origin is that at some time ¢, =z, () <0, i.e.,
7y () € —1, whence it follows that any possible synthesis is unstable.

In this paper attention will be confined to the case of stable synthesis. Throughout
the sequel it will be assumed, without loss of generality, that z; = 0. The control synthesis
problem will be solved with the help of the controllability function © (¢, z) /2/, which plays

a role in the stable synthesis problem analogous to that of the Lyapunov function in stability
theory.

2. Our solution of the synthesis problem is based on the following theorem.

Theorem 1. Consider the controlled process (l1.1). Assume that the vector-function
f(t, z,u) 1is jointly continuous in all variables and, in the domain

{(I,I, u): ‘OQ‘<‘1v0<91<”1"<p,,u69}
satisfies a Lipschitz condition

Wiz u) —f @, w)I < Lylpnpa) (il 2" — 2’| + )| u” — ' i)
Assume that in the closed domain
G=J x{zllzII<R}  =Ilat) (2.1)
where 0< R < + oo, there exits a function O (f,z) satisfying the following conditions:
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1) 8(, 1) >0 for 2+0,t<=J and ©(,0)=0 for any t=J.

2) O (t, z) is continuous everywhere and continuously differentiable everywhere except
possibly at points (¢, 0), t = J.

3) There exists ¢ >0 such that the set Q. (!) = {z: 8 (t,z) ¢} is bounded and (), (¢) :
{: 1zl < R} for all t=J.

4) There exists a function u({,r)¢:Q for 2=Q.(t),t—=J such that

n
a0 (t, 1) Y 08 (4, 1)
ot . ar,
11

flt, 2, u(t, 1) < — pOIV(L, 1) (2.2)

for some o >0 and B > 0; moreover, in the domain {(¢, z): to <t < 4, 0<<p, <l zil Py} the
function satisfies a Lipschitz condition {Ju (t, ") ~ u (¢, )|l <C L, (py, po) Il 7 — 2" |l

5) e<CIB (t; — to)al®

Then the trajectory of system (l1.1l) beginning at an arbitrary point z, < Q. (t,) at time
t; will reach the point z =0 at a certain final instant ¢, + T, where T < aB¥/= (t,, z,)/B.

The proof of Theorem 1 is analogous to that of the corresponding theorem in /2/ for
steady systems (l.l1). Note that condition (2.2) guarantees the possibility of stable syn-
thesis.

Remark 1. 1f a= -+ o0, then 8 (2} is a Lyapunov function guaranteeing asymptotic
stability of the trivial solution of system (1.1).

In /1/, and also in /2, 3/, we devised methods for constructing a controllability
function O () and a synthesizing control u(z) for linear steady and certain classes of non-
linear ones. Unlike the Lyapunov function, however, the controllability function was exhibited
in implicit form, i.e., as the solution of a certain algebraic or transcendental equation.

3. To illustrate the synthesis of bounded controls, we consider the system

=A@ z+ B¢ u, x=R", u= R, Juligd (3.1)
We shall assume henceforth that
A(t), B(t)e= C=lty, + 00), 1A ()]l < a, [ A*B (1)]] < b*+! (3.2)

(k=0,1,..), Vt=I[ty, + )
A= A () — Id/dy

(I is the identity matrix), and in addition
rank (B (t), AB(t), ..., AVB (1)) = n, Vt=J (3.3)
Theorem 2. Consider system (3.1). Let O (t,z) be the function defined by the equation

22,8 = (Ne ' (t) z, z), 50, a, >0 (3.4)
in the closed domain G (2.1); 8 (t,0) =0, where

4

Ne(t)=Sexp(

o) © (¢, V) B(x) B* (1) @* (1, 1) dr (3.5)

(the asterisk denotes transposition), @ ({,t) is the Cauchy matrix of the system = = A (t) x.

Then there exists ¢>> 0 such that the set (@, (!) — {z: B (¢t,z) < ¢} is bounded and Q. (¢) C
{r: lz]l<< R} for any t<J, in addition, for any z, & Q, (t;) \ {0} the unique solution =z ()
of system (3.1) with the control

w(t,z) = —B* (t) Nott.my () 2, 2 Q, (£} \\ {0} (3.6)

and initial condition x (¢) == z, is defined on a certain semi-open interval [, ¢ + T)C J
and satisfies the condition limz (1) =0 as t—t, + T, where T <O (t, z4)/B, p > 0. Moreover,
e Pp(t,—1t) and for any d >0 the coefficient g, >0 may be so chosen that the control
u(t,z) satisfies the constraint jJu(t,2)li<{d for z= Q. (1) \ {0}, t =J.

Remark 2. If O is fixed, then for any 6 & (0, 1/(22)) the function (3.6) is a stabilizing
control for system (3.1), and o= (Ng? (1) 2, 1)/(2a,) 1s a Lyapunov function.

The proof of Theorem 2 amounts essentially to verifying that u (#,z) 1s bounded and
satisfies conditions 1 through 5 of Theorem 1 for the selected functions B (¢, z) and u (¢, z).

Note that under the assumptions of Theorem 2, if 0« ©< 1/(2a), the matrices N (f) and

t-—%

Nie (1) = S(r — t)exp <~—6——)CD(I. 1) B (1) B* (v) ®* (¢, 1) dt 3.7)
t



are bounded and positive definite:

VeV <1235 1810 (0] < gy 3.8)

(Ne(t)z,2) >0,(Nyo (t)2,2) >0 for z50 and any t<J. 1In addition, one can show by direct
substitution that Ng(t), Ne(t} and Ne ' (f) satisfy the equations

dNe/dt — ANg — NeA* = —BB* + Ne/0 3.9)
dN/dt — ANp — NgA* = —Ng + N,/ (3.10)
dNg'/dt + Ng'A + A*Ng' = Ng'BB*Ng! — Ngl/6 (3.11)

we shall show that Eq. (3.4) has a unique positive solution O {{,2) in some closed domain
G {2.1). o
Consider the function F {t, z, 8) = 24,8 — (Ng! (1) z, x). Since
(Net () z,z) Z | Ne ()| izl 22> (1 — 2a@) || = || ¥/(b*8)
{we are using the first inequality of (3.8)), it follows that F (t, 7, 8)<< 0 for sufficiently
small B (x+ 0,1 =J). In addition, for all z+#0,t&J the function F(f, 2,68} is monotone

increasing since 4F (i, z, 8)/08 > 24, > 0.
On the other hand, F(t,2,8)>0 for 8= i< 1/(28) (where A= 1/(2a +e),e>0) and

any (¢, 2) e G, where
R = [2a,A/(max || N,71 (1) ]| )
L=

This follows from the inequality
WDz, )TN O 22 <IN ()R < 2000

l.e., F{t,2,A) > 0.

Thus, Eq.(3.4) defines a positive function ©(i,z) in the domain G for zs=0. The fact
that this function is continuous and continuously differentiable for 250 and any t&J
follows from the implicit function theorem, since 4F (t, z, 8)/80 =< 0.

Put O (, 0)=10,t<=J. It can be shown that 6 (t, %) is continuous at z =0 for any

t=J.
Indeed, suppose the contrary: there exists ¢, >0 such that, for any &>0, there exist

2 j<8, and ¢ eJ such that e{,s) > ¢ We have

2000 (', ') = (Nabr, P'%) @)z, HN&!i'. %) &) = B < M8®
(M = max § Ng! (1) )
=2

If then § < (st M), we obtain 8, 2') < &/2, contrary to our assumption.

The inequality (Ne™ (t)z, z) > Ne 2 (1)} 'l z]|® implies that the set (. {!) is bounded
and Q, () {1 lizll<RBR} for ¢<R (V a®R? + 2a,® — aR)/(2a,b% and any ¢ < J. Thus conditions
1-3 of Theorem 1 are satisfied.

To verify the other conditions of the theorem we need some auxiliary results.

Consider the operator De (0 < © < 1/a), defined for matrices P (t) as follows:

o

(DeP) {t)——-'g exp (15" )P @ (3.12)

It can be verified that D¢ has the following properties:
10, 1f | P ()b for te (L, + ), then
1 De™P) )} < b I8/(1 — aO)™
2°, If P = Clity, + o), | AP (| < b for te[ty, + ), then O™ (De™ P)(1)Z P (2) as
8—0 on [, + o).
Lemma 1. There exists 64 >0 such that for 0«0 < 8,

Ne()=-5 3 EL(, ) (3.13)
k=0
Me(t)=—g 3 (1 +REL (1, 6) (3.14)

k=0



(B (t, ©) — (Do" (ADe)* B) (1)} (D" (ADo)* BY (1))*, n -1, 2)

Proof. 1t follows from the properties of the operator /g that the series (3.13) and

(3.14) may be differentiated with respect to t on lf. - o) for < @6< 1:(c : ». Hence, one can
show by direct substitution that these series satisfy Egs. (3.9) and (3.10), respectively.
Thus (3.5) and (3.13) are bounded solutions of Eq.(3.9), and (3.7) and (3.14) are

bounded solutions of Eq. (3.10), te (4, +oo).
We transform Egq.(3.9) to the form

-

—(A-i--gl)] 1v9+1v6[_(/4+2—19)1] 4+ BB* =0 (3.15)

Let us assume that Eq. (3.9), and hence also (3.15), has two distinct bounded solutions
NgV () and A® (n. Then their difference Ag() = Ng® (1) — N () will satisfy the equation
obtained from (3.15) by dropping the term 4#B*. Consequently, the solutions () of the
system r = — (4 () - //(28))z satisfy the identity

(Kg Wz, 2) = ¢, Vi & [ty, + 00} (3.16)

Choose g so that for 0<8<q¢ one has |z()]}—~0 as t—-ro. Then the identity (3.16)
can hold for all (&t ro) only if Kgq(t)=0 for any telt, + ) and c¢=0. Thus, when
0O <q Eg.(3.15), and hence also (3.9), has a unique bounded solution. Hence it follows
that when 0« 8 < 8, — min (1/(2e); 12 + ); ¢} the matrix g () can be represented by the series
(3.13) for any telt, + o).

Analogous arguments show that if 0< 8 <¢ Eq.(3.10) has a unique bounded solution, and
so, when 0« ® <8, the matrix ,4(1) can be represented by the series (3.14) for any ‘&
[’oy + oo},

Remark 3. The essential point in Egs.(3.13) and (3.14) is the decomposition of the
matrix into a sum of positive matrices. In the steady case these decompositions are simplified:

k
E(M (1, 8) = Rlg (Ryo4)" BB* (Ryed)* HI%
Ryg= (4 + 1/6)7

these formulae are used in the proof of Theorem 2 of /3/.
Lemma 2. There exists ©; >0 such that for 0<< 0 <8,
O (No () z, 2) - 78| z]|? v >0, Vi=/J (3.17)

Proof. We have

n—1

[ Pz, 2) =(6, ()G * 1)z, 2) =(G,* (1) z, G * (1) 2) >0
k=0
(Px (1) = (AFB (O)AFB ()%, Gu () = (B (1), AB (1), ..., A™IB (1))
for z+0¢ and any e/, since otherwise (3.3) would fail to hold. In addition, the function

G, (1) 1s continuous, and so there exists a function v (1) >0 continuous on J such that (G,* (z,
Gp® ()1) > 2y () 1z . Therefore

n—-1
(Aé_‘o P (), rj22n|zPp, vi=miny () >0 (3.18)

It follows from the properties of Dg that

n—1

n—1
> 87ED (1, 8) 3 F P (1)
k=0 k=0
as 86—V on J. Hence there exists 6,>0 such that, for v<0<8,
n—1
(3 6 VED (1, 6) 2, 2) >z, Vi
k=0

We shall assume that 6,<{; inequality (3.17) then follows from the preceding inequality.

We can now prove the validity of condition 4 of Theorem 1.

Differentiating the relationship 2a,0 (t, z) — (New, x(l)z, x) =0 along trajectories of system
(3.1) with a control of type (3.6) and noting (3.4) and (3.11), we obtain



. (N ()9, ) 1
Ot <= [+ sr St ]+ 1=Nha02 @19

From Lemma 1 and the properties of Dg we obtain the inequality

(Mo ()Y Y) <4 [nB (Ne(t)y, ) + 8], (3-20)

S:(E (A +RKEP(E Sy p)

Next, since § < r®" | y|l* r, >0, for 0 < 8 < 8, < 1/(a + b), it follows from (3.20),
Lemma 2 and (3.19) that

Ot —MH+4n+r/p)?, 250
in the closed domain G (2.1), where
R = (20@/max || No™* ()], 0< 8 < 6,< 6, =
min (801 elv ezv 1)

We will now show that the control is bounded for z & Q.(t) \ {0}, t = J,
Using (3.6) and (3.1) and recalling the properties of Dg and Lemma 1, we have

il u (tv I) ”2 = 2aoV0 (tv y (tv .‘C), ] (tv -’l‘)) (3.21)
Here
Vo(t, y, 8)=(M,(t, B)y, y) ( i EPt, 8y y), s=0.1,... (3.22)
x=0

M, (t, ©) = {((SA + 1) Do (ADe)’ B) (1)} {((8A + I) De (ADe)’ B) (t))*

Consider the family of functions (3.22) for 0<<8 << 8,, y%0,t=J. Using the properties
of De, one can show that V,(t,y,8)< 2+ V,,, (t, y, 8). Therefore

Vo(t'y’8)<2.'l'—2+?Vu(tvyve)‘ s=1,2...
Now, for 0<C 8  B8,< 6,,

b"*e, 4 b"

2
(M, 0) y. y)<( = ) "yt =mO" [y’

. 1 — a8,
and so, in view of Lemma 2, we infer that V, (¢, y, 8) < m/y,. Choosing

ay < &% (2" — 4 4 27 m,/y,)
we see that the control is bounded:

lu@t 2)Il<d, 2z Qo () \ {0}, t=1J
Now, if we require that

¢ < min {R V a®RY I 2a,b* — aR; B (t; — t,): 84}
where f = (1 + 4(n + r,/y,))"', then
Q. C{rllzll<R)andt, + T < ¢,.

This completes the proof of Theorem 2.
Note that the assumptions of Theorem 2 are satisfied, for example, if the elements of
the matrix @' (9B (1) are guasipolynomials.

Example. Consider the system

z 2z, 3 3z
W= SR, w=—3a—T 4w 181K, tE(L;10]

Then
i/t 2/3

(B (). AB (1) =H -

|, 0(‘)=I1/t —2/1"

—1 3

Suppose, say, that b= 7.22, a = 4.8, 0< 0 <0707, y, = 3.66-10%, m;, = 52, =0, B =%, a9 = 1.7.1073,

Then the control solving the synthesis problem has the form
® 126\ t 8\ xy
w9 =— (g + T)W‘(F‘T)Tﬁ'



1o

& e (0N {0) = {2: 9 < 4.47-107) N\ {0}, ¢ &= [1; 10))°
where © - 6. 11 1is the unique positive solution of the equation
34107368 — (720002 + O6ezgx, ~ 327,00% + (1201,% - 4t3rz, —
815,28 + tdry? — 20317, - 21,2
4. consider system (3.1) (to simplify the discussion we assume that r=1). Define an
n-dimensional vector-function ¢ (t) from the conditions c¢*(t) A'B(t) = 0,i= 0,1,...,.n—2;

e* (1) AT'B (t) = 1. In view of (3.3) and the choice of ¢ (t),it can be shown that the matrix
H () == col (c* (1), (Aye (1)*, .. ., (A7 e (1)*) (“4.1)
(A, = A* (t) 5- Id/dt)

is non-singular for any t&=J, Transforming in (3.1l) to the new variable z=AH (t{}z and
introducing a new control wv = (A,"c(t))*H™'(t)z + u, we obtain a steady system

2l =gy, i=1, .. uan—1; zy=v, |v|Ld <d (4.2)

Solving the control synthesis problem for this system, using Theorem 2 or Theorem 2 of
/3/ and returning to the old variables and control, we obtain

Theorem 3. Let 6 (t,z) be the function defined by the equation

24,0%" = 2 fy8* (ATIC @)* 2] [(ATC (1) 2l 240 %.3)

i, j=1
= 1
Ne'— 118" ™ i, jot, e )

in the closed domain G (2.1), © (¢, 0) = 0.
Then there exists ¢ >0 such that Q,{t) is bounded and @, (¢) C {z: |l z||< R} for any
te=J, and for any =z, & Q. (o) \\ {0} the unique solution =z (t) of system (3.1) with control

A"‘C( NE]
ult, 2= 2 = en—iu‘ IO @OSCP 2 2EQ. ()N 0 4.4

and initial condition &z (fo) = 2o is defined on some semiclosed interval i, ¢, + T)CJ and
satisfies the condition: limz(t)=0 as t—t, + T, where T < (I + 4n) 8 (t,, z,). Moreover,
e (t — to)(1 +4n) for lluft,z))l<<d for 2= Q, (t)\ {0}, t = J.

Example. Consider the motion of a rigid body with a single axis of symmetry controlled
by two jet engines, described by the equations
) = —aXpzy T u; €08 WE, Z,' = ax,zy — 4, Sin wi, I = ugluy | <,
lug < 1, a-= const

Here 1,1z, are the projections of the angular velocity of the body on coordinate axes
rigidly attached tc it, © is the angular velocity of rotation of the first engine, and u,
and u, are the controlling torques.

The problem is to construct controls u (4, z) and u, (f,2z) that will take the bedy from an
arbitrary position z(0) =3z, to the point O (5f;=2,=2z;,=0) in a finite time.

Choose  uy(f, z) = —sign z4p. Then the system becomes linear. Using Theorem 3, we see that
the control

2
w0 = e - & (M o)+ 9%+

Uy (1. 1) = —SigD Zgp; @ =  SigN Typ — ZTgg — ©
E = z, sin o + x, cos wt, N = 2z, CO8 Ot — z, sin wt

where @ =60 (, ) is defined by the equation
3
= [(re)o -+ e

takes any point s, from some given neighbourhood of the origin to the point O in a finite time
T =]z, and moreover |u;{t,z) |1, i=1{,2.
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EXPONENTIAL STABILIZATION OF NON-LINEAR STOCHASTIC SYSTEMS®

V.A. UGRINOVSKII

We consider the stabilization of non-linear systems whose parameters are
subjected to "white noise". For stochastic systems with non-linear
feedback, we derive sufficient (frequency-domain) conditions of exponential
stabilization by a controller that uses information about the system
output (incomplete system state information). The problem of the
stabilization of linear stochastic systems has been studied in some detail
/1-3/. Yet for non-linear stochastic systems we only have general
theorems that reduce the stabilization problem to finding a stochastic
Lyapunov function /4, 5/.

In this paper, we derive sufficient conditions of exponential
stabilization by methods of the theory of absolute stochastic stability.
The advantages of these methods are well-known: the specific Lyapunov
function is not required, and its existence in the class of functions
"quadratic form plus integrals over non-linearitles" is easily checked
/6/. The latest results of this theory for stochastic systems /7/ make
it possible to solve the stabilization problem for a wide class of non-
linear systems with parametric disturbances.

1. Formulation of the problem. we consider a controllable dynamic system described
by Ito's differential equation

xr = (AO =+ EAIU)].) x + (bo -+ Eb,w,') u - (11)
(90 + Z9w)) @ (0), 0 =v*z

Here z is the n-dimensional state vector, u is the d-dimensional control vector, o is
the I[-dimensional vector of observed variables, ¢ is the m~dimensional vector function
describing the non-linear feedback or allowing for other non-linear effects in the system,
Ay by, qy (= 0,1,...,5) are appropriately dimensioned constant matrices, and wy(j=1, ...,
s) are independent standard Wiener processes; here and henceforth, summation is over j from
j=1 to j=s, unless otherwise stated.

The class of admissible non-linear functions ¢ (6) is described in accordance with the
general theory of absolute stability /6/. Let

Fy (0, 2, ¢, 9) = o*ro + 20°pg + ¢*gp — Z/,*6p (1.2)
fy=diag [AJA*), Aj=v*(Axz+q@), T=1....5

The symbol diagl-] is the vector formed from the main diagonal elements of the matrix
in brackets: f, (j=1, ..., s) are I-dimensional vectors, and ¢ is an m-dimensional vector.
The real matrices r=r* p, g =¢%* 0 are I X [l,l X m mXm, | Xm respectively. We assume
that the matrix 0 satisfies the following conditions: a) it is non-zero only when v*b; =0
for all j=1, ...,s; b) if condition a) holds, then the element 0,; of the matrix 6 may be
non-zero only if ¢; is a continuously differentiable function of a single variable o, the
k-th component of the vector O.

We assume that the non-linearity ¢ satisfies the condition

*pPrikl .Matem.Mekhan. ,52,1,16-24,1988




